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Abstract: Lecture demonstrations involving polarization of light are presented and discussed from the quantum 
theoretical point of view. The demonstrations clearly show that only two base states are required to describe the 
quantum state of a photon and they illustrate an optical analog of the Stern�Gerlach experiment that involved 
electrons. 

Introduction 

The classical theory of electromagnetic radiation offers an 
explanation of optical polarization phenomena. When speaking 
about photons, however, a quantum theory of light is required 
[1]. Simply put, a single photon possesses neither the electric 
nor magnetic fields associated with a classical beam of 
electromagnetic radiation. Photons, like electrons, are quantum 
entities; both are examples of particle-waves or quons [2]. 
Photons are peculiar quons, however. Just like electrons, 
photons possess an intrinsic angular momentum, but the 
photon is a relativistic quon. An electron possesses a rest mass, 
but a photon does not. For an electron, the intrinsic angular 
momentum is called spin and the Stern�Gerlach experiment 
established that to describe the spin state of an electron only 
two base states are required. In the language of quantum 
mechanics one says an electron possesses a spin angular 
momentum, quantum number s = 1/2, with the two spin base 
states given by 1/ 2sm =  (spin up) and 1/ 2sm = −  (spin 
down). For a photon, on the other hand, the intrinsic angular 
momentum is often called spin or helicity, but could be called 
circular polarization. One says the photon possesses a 
polarization angular momentum quantum number j = 1 with 
the two polarization base states given by 1jm = +  (right-

hand circularly polarized) and 1jm = −

!

 (left-hand circularly 

polarized). What makes the photon peculiar is that the 
state is missing due to the relativistic nature of the 

photon mentioned above. In other words, the photon�s state of 
intrinsic angular momentum parallel to its direction of motion 
can only be +1 or �1 (in units of ) and there is no component 
of intrinsic angular momentum perpendicular to the direction 
of motion. 

0jm =

Relativistic effects put aside, the bottom line is that only two 
base states, or basis functions for representation, are required 
to completely describe the polarization state of any photon. For 
circularly polarized light the base states could be designated 

conveniently as R  and L  instead of the 1+  and 1−  

used above. Linearly polarized light can use v  and h  
conveniently to designate the orthogonal vertical and 
horizontal polarization base states. One of the mysteries of 
quantum theory is that it makes no difference which base states 
we choose to describe the polarization quantum state provided 
they belong to a complete orthonormal set. That means we 
could describe the photon polarization basis states R  and 

L  in terms of the v  and h  basis, or vice versa. In the 
former case we can express the result as [1]: 

 
( )

( )

1 h v
2

1 h v
2

R i

L i

= +

= −
 (1) 

This convention is consistent with a right circularly polarized 
photon carrying an angular momentum of  in the direction of 
motion while a left circularly polarized photon carries an 
angular momentum of �  in the direction of motion.  

!

!
Usually the choice of basis representation depends on 

experimental circumstance or interest. For the polarization 
experiments described below the orthogonal vertical- and 
horizontal-plane polarization base states v  and h  provide 
the most convenient basis. 

In this article, we describe four simple lecture 
demonstrations involving plane-polarized light that provide a 
clear illustration of the two-base-state quantum nature of 
photon polarization, the interference of quantum probability 
amplitudes, and the optical analog of the famous Stern�
Gerlach experiment. 

We begin with the more familiar classical point of view. 
Classically speaking, a sheet of Polaroid film can produce 
plane-polarized light from an unpolarized light source. One 
says the electric field vector of the polarized beam of light is 
some vector that is perpendicular to the propagation direction 
of the beam and oriented at some angle θ with respect to some 
arbitrary reference. As is easily demonstrated, and well known, 
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That is an interesting question. If 100% of the photons in a 
photon beam pass through the vertical polarizer then we know, 
only from this experiment, that all of the photons must have 
been plane-polarized in the v  polarization state. Similarly, if 
the vertical polarizer absorbs 100% of the photons then all of 
the photons must have been plane-polarized in the h  
polarization state. In any other situation we simply have no 
way of knowing the polarization state of the photon before 
measurement and thus we cannot represent the photon by a 
definite quantum state. In other words, we cannot describe the 
photon as either v  or h . 

a second Polaroid sheet oriented at an angle  with 
respect to the first sheet will completely block the light beam 
such that no light passes though the crossed-polarizers. 
Another well-known polarization phenomenon involves a 
double-refracting or birefringent material, like calcite, that 
will, classically speaking, separate a beam of unpolarized light 
into two beams of plane-polarized light that are polarized in 
mutually perpendicular directions. One beam is referred to as 
the ordinary ray while the second is termed the extraordinary 
ray. It is very easy to demonstrate this effect by simply 
viewing the double image of an object produced by a calcite 
crystal. 

/ 2θ π±

We would like to describe these classical demonstrations in 
the field of optics in terms of the quantum mechanics of a 
single photon. We can narrate the demonstrations using the 
language of quantum theory. Quantum theoretical descriptions 
of light are essential to the study of quantum chemistry and 
atomic/molecular spectroscopy. We use, in particular, a 
language and grammar of quantum theory developed by Dirac, 
usually referred to as Dirac�s bra�ket notation, that has many 
useful applications in quantum chemistry [3]. 

Our ignorance of the polarization quantum state of any 
unpolarized photon before measurement is complete. In an 
unpolarized or even partially polarized photon beam the 
likelihood that the polarization state of a photon is either v  

or h  is completely random. This randomness involves 
probabilities of the classical kind. If the probability that any 
photon is in the state v  or h  is 50�50, as in a classical coin 
toss, then we say that the photon beam is unpolarized. This is 
usually the case for photons emitted from an incandescent light 
bulb, and this is why the linear polarizer projects 50% of the 
light from the lamp in Demonstration 1. The difference 
between probabilities of the classical kind and probabilities of 
the quantum kind is very important and often presents a 
stumbling block to clear understanding of quantum theory. 
This difference is illustrated in the next demonstration. 

Demonstration 1 

Draw a narrow line in black ink, about 1 cm in length, on a 
sheet of transparency film and project the image of the line to a 
screen using an overhead projector. The light producing the 
image is unpolarized. Now place a Polaroid film over the 
transparency film. The light producing the filtered image of the 
line is now polarized and the intensity of the image is reduced 
by 50%. What does this have to do with quantum theory? The 
answer is that photons from the light bulb are unpolarized. 

Demonstration 2 

Assume the Polaroid sheet in Demonstration 1 again defines 
the vertical position. Now simply place a second Polaroid sheet 
over the first. Observe that if the second Polaroid is oriented in 
the same vertical position as the first then there is no 
diminution of the intensity of the image of the line. If the 
second Polaroid is rotated by 90º to the horizontal position, 
however, the image is totally blocked. No photons pass 
through the crossed-polarizers. Of course, this is the familiar 
demonstration in the classical theory of light, but how does the 
quantum theory of photons describe the result? 

From the quantum point of view, unpolarized light, or even 
partially polarized light, consists of photons that cannot be 
described as in a definite polarization state. In a real sense, a 
photon assumes a known polarization state only after �doing 
the experiment� of measuring the photon polarization. For any 
direction in space a single photon is either entirely polarized in 
that direction or it is entirely polarized at right angles to that 
direction. There is no in-between here. This means that when 
the polarization state of a single photon is measured by a linear 
polarizer, such as the Polaroid sheet oriented in some definite 
direction in this demonstration, the linear polarization analyzer 
will either absorb the photon or allow the photon to pass 
through the analyzer. 

In quantum theory, the base states are orthonormal, which 
for the choice of using plane-polarization base states v  and 

h  means that v v  = h h  = 1 and v h  = h v  = 0. 
We are now well into using Dirac notation and must be very 
clear what this notation means in the machinery of quantum 
theory. 

The Polaroid measures the linear polarization of the photon. 
Assume the polarization axis of the Polaroid sheet defines the 
vertical position as a direction in space. If the photon passes 
through the linear polarization analyzer, then the photon 
polarization state is known definitely. It is polarized in the 
vertical direction. Only then can we describe the photon 
quantum state as the pure v  polarization state. If the 
polarizer absorbs the photon, the other possible outcome of 
measurement, it is polarized in the orthogonal horizontal 
direction and we can say the photon was in the pure h  
polarization state. The Polaroid blocks the beam of photons in 
h  by absorption. Again, there are only two possible 

experimental results. The important point is that after the 
polarization measurement, the photon passing through the 
Polaroid is plane-polarized v . Is the photon polarized before 
measurement? 

In Dirac notation, χ ψ  is a quantum probability 
amplitude, a pure number that may be complex. In our 
example if the photon is in the known polarization quantum 
state ψ  and then has something done to it, χ ψ  is the 
probability amplitude that the photon finds itself in 
polarization quantum state χ  as a result. The probability that 

the photon begins in ψ  and ends up in χ  is given by the 
absolute square of the probability amplitude: 

 Probability = 2ψ χ ψ χ ψ ψ χ χ ψ∗ = =χ  (2) 
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This is a fundamental maxim of the quantum theory. As we 
shall see, linear combinations of quantum probability 
amplitudes can lead to quantum interference effects. 

We can use eq 2 to understand again why 50% of the photon 
beam from an incandescent bulb will pass through a vertical 
polarizing filter. We calculate the overall probability of finding 
the photon in v  after measuring the polarization with the 
vertical Polaroid filter: 

 Probability = ( ) ( )2 2 1 1v v v h 1 0
2 2 2 2

+ = +1 1  (3) 1
2

=

Again, it must be emphasized that the factor of 1/2 in each of 
the two terms in eq 3 represents our assumption that the beam 
of unpolarized photons is a random 50�50 mixture of photons 
in the v  and h  polarization base states. [As long as the 
population of quantum states is completely random it does not 
matter which pair of base states we choose in eq 3. We obtain 
the same result if we choose as basis states R  and L  

instead of v  and h .] As a photon approaches the vertical 

polarizer we assume the likelihood that it is in the v  state is 
completely random with a probability 1/2. This assumption is 
confirmed by experiment in that 50% of the unpolarized 
photons pass through the vertical polarizer. Equation 3 is a mix 
of classical probability involving randomness and quantum 
probability involving probability amplitudes. 

After the first Polaroid has sorted the unpolarized photon 
beam, all of the photons passing through the apparatus are in 
the pure v  polarization state. There is no random mixture of 
photons approaching the second Polaroid filter oriented in 
either the vertical or horizontal direction. For the horizontal 
orientation experiment, we can calculate the probability that a 
photon in the known v  state before the second, horizontal 

Polaroid will end up in the h  state after interacting with the 
horizontal Polaroid: 

 Probability = 2h v 0=  (4) 

The calculation of quantum probability predicts that none of 
the vertically polarized photons will pass through the 
horizontal polarizing filter, as observed experimentally. If this 
were all we wanted to do then our introduction of Dirac 
notation might not seem worth the effort. With this 
background, however, now we can show something well worth 
the effort. 

Demonstration 3 

Take a third sheet of Polaroid filter material. (Polaroid 
sunglasses have been suggested for this purpose [4].) Place it 
over the first (vertical) and second (horizontal) polarizers and 
note that regardless of the orientation of the third polarizer no 
light passes through the combined apparatus. This is not 
surprising. There are no photons to interact with the third 
polarizer. Now put the third polarizer between the outer 
crossed-polarizers and rotate the middle polarizing filter. 
Surprise! Observe that now light does pass through the 
apparatus in spite of the cross-polarization of the outer two 

polarization filters. This polarization phenomenon is known as 
the three-polarizer paradox. It is a paradox because each 
polarizing filter acts to absorb light and one is left to explain 
how placing an additional absorber between the crossed-
polarizers results in less absorbed light overall. The quantum 
explanation for this paradox is based on the superposition 
principle and the quantum interference of probability 
amplitudes [5]. 

By the superposition principle of quantum theory, any pure 
quantum state can be expressed as a linear combination of 
appropriate (i.e., complete and orthonormal) base states. What 
makes this interesting is that any number of possibilities exist 
for the base states representing the quon and each set is as 
good as any other. Until now, we have chosen, arbitrarily, v  

and h  to be the two base states representing the polarization 
quantum state of a photon. This means that if the photon is in 
some other definite quantum state ψ  then we can represent 
this state in the linear superposition 

 v v h hψ ψ ψ= +   (5) 

where it is seen that the coefficients in the linear combination 
over base states are probability amplitudes. The superposition 
principle is another important maxim of quantum theory and 
often not well understood. The first thing that needs to be 
emphasized is that the photon in pure state ψ  is not a 

mixture of photons in states v  and h . 
We now want to see what happens when we change base 

states. Earlier we noted that our vertical direction was rather 
arbitrarily chosen. Assume that another experimenter has a 
skewed view of things and this person�s vertical is actually at 
some angle  compared to ours. The situation is illustrated in 
Figure 1. What is the relationship of the skewed base states 

θ

v′  and h′ , in this rotated coordinate system, to the v  and 

h  base states we have chosen? To answer the question, 
express the skewed base states as the linear superposition of 
the original base states: 

 v v v v h h v′ ′= + ′  (6) 

and 

 h v v h h h h′ ′= + ′  (7) 

These are both versions of eq 5. The real question now is what 
are the probability amplitudes in eqs 6 and 7? Before 
answering the question there is a subtle but important point to 
make. When one changes base states one has to keep track of 
possible �phase changes.� This is because all probability 
amplitudes really have a factor of  associated with them, 
where  is called the phase angle. Values of  may be quite 
arbitrarily chosen because the probabilities of any outcome do 
not depend on the value. One must be very consistent with 
one�s choice, however. In the present case it is not difficult to 
show, using Figure 1, that the probability amplitudes can be 
taken as [1]. 

eiδ

δ δ
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v v cos

v h sin

h v sin

h h cos

θ
θ

θ
θ

′ =

′ =

′ = −

′ =

 (10) 

With these probability amplitudes in hand we can show how 
the quantum interference of amplitudes explains the three-
polarizer paradox. 

The first polarizer prepares a photon in the pure polarization 
state v

θ
. Assume the second skewed polarizer is oriented at an 

angle  with respect to the first. First, we express the pure 
state v  as a superposition of the skewed base states v′  and 

h′ , and in turn we represent the latter states by the original 

v  and h  base states. Using the probability amplitudes from 
eq 8 and eq 10 it looks like this: 

 
( ) ( )

( ) ( )2 2

v cos v sin h

cos cos v sin h sin sin v cos h

cos sin v sin cos sin cos h

v

θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

′ ′= −

= + − − +

= + + −

=
  (11) 

Figure 1. Coordinates showing the orthogonal horizontal and vertical 
directions in space perpendicular to the momentum of the photon. The 
figure also shows the sense of a positive, clockwise rotation about the 
direction of motion of the photon which is into the plane. 

 

v v cos

h v sin

v h sin

h h cos

θ
θ

θ
θ

′ =

′ =

′ = −

′ =

 (8) 

We seem to have gone to considerable length to prove an 
identity, but eq 11 contains what Richard Feynman [1] calls 
�the deep mystery of quantum mechanics�the interference of 
amplitudes.� As eq 11 evidently demonstrates, the h  

character of v′  destructively interferes with the h  character 

of h′  due to the difference in phase with which these 
amplitudes are added in the superposition. This destructive 
interference guarantees the pure-state nature of the v  
photon. 

Although the amplitudes may be calculated for any chosen 
angle, take the case, for example, where  equals 45º. In our 
reference frame we would call this a �diagonal� direction, but 
from the other person�s skewed point of view it is �vertical.� 
From eq 8, for  equals 45º, we can write 

θ

θ

 

1 1v v
2 2
1 1h v
2 2

′ = +

′ = − +

h

h
 (9) 

When the v  photon from the first vertical polarizer 
interacts with the middle polarizer oriented in the skewed-
vertical direction the h′  character of the photon is removed 

by absorption and only the v′  character passes the middle 
polarizer. In other words, the middle polarizer state selects 
photons for the pure v′  state. In effect the absorption of h′  
by the middle polarizer removes one of the two interfering 
amplitudes in eq 11 and gives h  character for those v′  

photons passing the middle filter. Because the v′  photons 

have h  character, the probability that a photon will pass 
through the third polarizer in the horizontal direction is given 

by 2h v′ . Because this probability is not zero, photons of 
light pass through the third, horizontal polarizer and restore an 
image of the original line. 

The v′  quantum state is not a 50�50 mixture of states v  

and h  but it does have equal v  character and h  

character. The same holds true for the h′  state. 
Now just as we can represent the skewed base states in terms 

of the original base states, we can do the inverse and represent 
the original base states in terms of the skewed basis. Again, the 
choice of basis for representing any photon polarization state is 
arbitrary. In the present case the inverse transformation of 
basis gives the following internally consistent amplitudes: As mentioned, each of the three polarizers absorbs photons. 

Half of the photons from the light bulb are absorbed by the 
first vertical polarizer because we can consider the unpolarized 
light consisting of 50% photons in the v  state, see eq 3. To 
quantify the total fraction of photons passing all three 
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polarizers, take the example of the middle polarizer oriented at 
 = 45º. Polarization measurements in this �diagonal� 

direction for a beam of photons known definitely to be in the 
θ

v  state yield completely random results that are determined 

by the quantum probability amplitudes. Half of these v  
photons are absorbed by the second diagonal polarizer. In 
other words, the probability that a v  photon will be found in 

the v′  state passing through the middle polarizer is given by 

the v v′  probability amplitude: 

v

 Probability = ( )2 2 2 1cos cos 45
2

θ′ = = ="v v  (12) 

Finally, half of the v′  photons passing the middle polarizer 
are absorbed by the third horizontal polarizer because the 
probability that a v′  photon will be found in the h  state 
passing through the third polarizer is 

 Probability = ( )2 2 2 1sin sin 45
2

θ′ = = ="h v  (13) 

This means that the fraction of photons from the light bulb that 
pass through the combined apparatus is (1/2)(1/2)(1/2) = 1/8 so 
the image of the line is dim, but it is definitely not zero. 

Demonstration 4 

Over the narrow line drawn on the transparency sheet above, 
place a calcite crystal. (Reasonably optical-quality calcite 
crystals of 3.0 × 1.5 × 1.5 cm3 in size can be purchased at very 
low cost in hobby stores with a mineral collection.) Observe 
the dual image of the line on a screen and rotate the crystal 
until the maximum separation of the two lines is made. The 
optical depth of the calcite crystal determines the magnitude of 
the maximum separation. For a crystal with a depth of 1.5 cm 
the two lines can be separated by about 2 mm. The calcite 
crystal is a different type of linear polarization analyzer than 
the Polaroid sheet. A single, unpolarized photon approaching 
the calcite crystal has the same 50�50 chance of becoming v  

polarized or h  polarized as with the Polaroid sheet, but now 
both photon polarization states pass through the analyzer. All 
photons polarized along the optic axis of the crystal become 

 polarized, say, while those polarized at right angles to the 

optic axis become h  polarized. The designation is arbitrary 

but the point is that two base states are required to describe 
linear polarization of the photons. 

We can prove that the quantum state of the photons found in 
one beam is orthogonal to the quantum state of the photons in 
the second beam. Place a Polaroid sheet over the calcite 
crystal. Show that by rotating the Polaroid sheet over the dual 
image that a position can be found which completely filters 
one of the two images. The quantized direction in space of the 
Polaroid is now aligned with the quantized direction of the 
calcite crystal. After this position is noted, rotate the Polaroid 
sheet by 90º and observe the image situation is completely 
reversed. What was lost is found, and what was found is lost. 
This observation proves that the two images from the calcite 
crystal are polarized in mutually perpendicular directions, and 
that the polarization states of a photon require two, and only 
two, orthonormal base states. This experiment is an exact 
optical analog of the Stern�Gerlach experiment. The Stern�
Gerlach apparatus can spatially separate a beam of unpolarized 
electrons into the two base states 1/ 2  and 1/ 2−  by the 
interaction of the electrons with an inhomogeneous magnetic 
field. The calcite crystal can spatially separate a beam of 
unpolarized photons into the two base states v  and h  by 
the interaction of the photons with an inhomogeneous crystal 
field. (A similar demonstration using a polarizing prism instead 
of a calcite crystal has been reported [6].) 

These four lecture demonstrations are very easy to do. The 
explanations in terms of the quantum theory of photon angular 
momentum are involved, but the two-base-state nature of 
photon polarization allows for clear illustrations of 
conceptually difficult quantum effects. 
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